Peter A. Gottlieb

Learn More
Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. However, these markers have proven problematic for uniquely defining this specialized T cell subset in humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of(More)
Type 1 diabetes (T1D) results from progressive loss of pancreatic islet mass through autoimmunity targeted at a diverse, yet limited, series of molecules that are expressed in the pancreatic beta cell. Identification of these molecular targets provides insight into the pathogenic process, diagnostic assays, and potential therapeutic agents. Autoantigen(More)
BACKGROUND The immunopathogenesis of type 1 diabetes mellitus is associated with T-lymphocyte autoimmunity. However, there is growing evidence that B lymphocytes play a role in many T-lymphocyte-mediated diseases. It is possible to achieve selective depletion of B lymphocytes with rituximab, an anti-CD20 monoclonal antibody. This phase 2 study evaluated the(More)
Defects in IL-4-producing CD1d-autoreactive NKT cells have been implicated in numerous Th1-mediated autoimmune diseases, including diabetes, multiple sclerosis, rheumatoid arthritis, lupus, and systemic sclerosis. Particular attention has been focused on autoimmune insulin-dependent diabetes mellitus (IDDM) because nonobese diabetic (NOD) mice and humans(More)
The CXC chemokine receptor 3 (CXCR3) is predominantly expressed on T helper type 1 (Th1) cells that are involved in inflammatory diseases. The three CXCR3 ligands CXCL9, CXCL10, and CXCL11 are produced at sites of inflammation and elicit migration of pathological Th1 cells. Here, we are the first to characterize the pharmacological potencies and specificity(More)
BACKGROUND Glutamic acid decarboxylase (GAD) is a major target of the autoimmune response that occurs in type 1 diabetes mellitus. In animal models of autoimmunity, treatment with a target antigen can modulate aggressive autoimmunity. We aimed to assess whether immunisation with GAD formulated with aluminum hydroxide (GAD-alum) would preserve insulin(More)
The 9-23 amino acid region of the insulin B chain (B9-23) is a dominant epitope recognized by pathogenic T lymphocytes in nonobese diabetic mice, the animal model for type 1 diabetes. We describe herein similar (B9-23)-specific T-cell responses in peripheral lymphocytes obtained from patients with recent-onset type 1 diabetes and from prediabetic subjects(More)
In mouse models, CD4+CD25+ T cells are involved in maintenance of peripheral tolerance. In humans, a subset of CD4+CD25+ T cells expressing high levels of CD25 (CD4+CD25high) with characteristics identical to murine CD4+CD25+ was recently described. We evaluated the characteristics of CD4+CD25high T cells in peripheral blood of type 1 diabetic subjects(More)
OBJECTIVE Autoimmune thyroid disease (AIT), celiac disease, and Addison's disease are characterized by the presence of autoantibodies: thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TGAb) in AIT, tissue transglutaminase antibody (TTGAb) in celiac disease, and 21-hydroxylase antibody (21-OHAb) in Addison's disease. The objective of this(More)
Recently we demonstrated that zinc transporter 8 (ZnT8) is a major target of autoantibodies in human type 1 diabetes (T1D). Because the molecules recognized by T1D autoantibodies are typically also targets of autoreactive T cells, we reasoned that this would likely be the case for ZnT8. To test this hypothesis, IFN-γ-producing T cells specific for ZnT8 in(More)