Learn More
Database systems tend to achieve only low IPC (instructions-per-cycle) efficiency on modern CPUs in compute-intensive application areas like decision support, OLAP and multimedia retrieval. This paper starts with an in-depth investigation to the reason why this happens, focusing on the TPC-H benchmark. Our analysis of various relational systems and MonetDB(More)
ÐIn the past decade, the exponential growth in commodity CPU's speed has far outpaced advances in memory latency. A second trend is that CPU performance advances are not only brought by increased clock rate, but also by increasing parallelism inside the CPU. Current database systems have not yet adapted to these trends and show poor utilization of both CPU(More)
High-performance data-intensive query processing tasks like OLAP, data mining or scientific data analysis can be severely I/O bound, even when high-end RAID storage systems are used. Compression can alleviate this bottleneck only if encoding and decoding speeds significantly exceed RAID I/O bandwidth. For this purpose, we propose three new versatile(More)
Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a(More)
In the past decade, advances in speed of commodity CPUs have far out-paced advances in memory latency. Main-memory access is therefore increasingly a performance bottleneck for many computer applications, including database systems. In this article, we use a simple scan test to show the severe impact of this bottleneck. The insights gained are translated(More)
In the past decades, advances in speed of commodity CPUs have far outpaced advances in RAM latency. Main-memory access has therefore become a performance bottleneck for many computer applications; a phenomenon that is widely known as the "memory wall." In this paper, we report how research around the MonetDB database system has led to a redesign of database(More)
Column-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records(More)
The holy grail for database architecture research is to find a solution that is Scalable & Speedy, to run on anything from small ARM processors up to globally distributed compute clusters, Stable & Secure, to service a broad user community, Small & Simple, to be comprehensible to a small team of programmers, Self-managing, to let it run out-of-the-box(More)
This paper analyzes the performance of concurrent (index) scan operations in both record (NSM/PAX) and column (DSM) disk storage models and shows that existing scheduling policies do not fully exploit data-sharing opportunities and therefore result in poor disk bandwidth utilization. We propose the Cooperative Scans framework that enhances performance in(More)