Learn More
Sphingomyelin, one of the main lipid components of biological membranes, is actively involved in various cellular processes such as protein trafficking and signal transduction. In particular, specific lateral domains enriched in sphingomyelin and cholesterol have been proposed to play an important functional role in biomembranes, although their precise(More)
Activation of the contractile machinery in skeletal muscle is initiated by the action-potential-induced release of Ca2+ from the sarcoplasmic reticulum (SR). Several proteins involved in SR Ca2+ release are affected by calmodulin kinase II (CaMKII)-induced phosphorylation in vitro, but the effect in the intact cell remains uncertain and is the focus of the(More)
The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and(More)
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of(More)
Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions, the lateral diffusion is driven by a more complex,(More)
Using extensive atomistic simulations, we show that there is a single experimentally accessible parameter--the sterol tilt--that can be used to determine a sterol's capability to induce order, and thus to promote, e.g., formation of lipid rafts. The observations also facilitate designing new effective sterols.
We describe how membrane proteins diffuse laterally in the membrane plane together with the lipids surrounding them. We find a number of intriguing phenomena. The lateral displacements of the protein and the lipids are strongly correlated, as the protein and the neighboring lipids form a dynamical protein-lipid complex, consisting of approximately 50-100(More)
Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins-not to mention numerous(More)
Large amounts of lipidomics data are rapidly becoming available. However, there is a lack of tools capable of taking the full advantage of the wealth of new information. Lipid bioinformatics is thus an emerging need as well as challenge for lipid research. Lipid concentration changes in biological systems reflect regulation at multiple spatial and dynamic(More)
We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular dynamics simulations, complemented by extensive comparison(More)