Pernille Poulsen

Learn More
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS We combined human insulin/glucose clamp physiological studies(More)
The etiology of type 2 diabetes is multifactorial, including genetic as well as pre- and postnatal factors that influence several different defects of glucose homeostasis, primarily in muscle, beta-cells, and liver. In the present twin study, we report heritability estimates (h(2)) for measures of insulin secretion, insulin resistance, hepatic glucose(More)
OBJECTIVE The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial(More)
OBJECTIVE Common variants in FTO (the fat mass- and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and nongenetic regulation of FTO mRNA in skeletal muscle and adipose tissue and their influence on in vivo glucose and(More)
OBJECTIVE—Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most independent effect on FPG with isolated impaired fasting glycemia(More)
BACKGROUND Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins. METHODOLOGY/PRINCIPAL FINDINGS Skeletal muscle (n = 11 pairs) and subcutaneous(More)
Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored(More)
BACKGROUND AND AIM The first genome-wide association study on birth weight was recently published and the most significant associated birth weight lowering variant was the rs900400 C-allele located near LEKR1 and CCNL1. We aimed to replicate the association with birth weight in the Danish Inter99 study and furthermore to evaluate associations between(More)
OBJECTIVE Genetic susceptibility, low birth weight (LBW), and aging are key etiological factors in the development of type 2 diabetes. LBW is common among twins. It is unknown whether twin status per se is associated with risk of type 2 diabetes, and valid concordance rates of type 2 diabetes in twins on a lifetime perspective are lacking. RESEARCH DESIGN(More)
1 OBJECTIVE—Retinol-binding protein (RBP) 4 is an adipokine of which plasma levels are elevated in obesity and type 2 diabetes. The aims of the study were to identify determinants of plasma RBP4 and RBP4 mRNA expression in subcutaneous adipose tissue (SAT) and skeletal muscle and to investigate the association between RBP4 and in vivo measures of glucose(More)