Learn More
Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic(More)
To elucidate the relative importance of genetic and environmental factors on the development of Type II (non-insulin dependent) diabetes mellitus, we examined a sample of twins (n = 606) ascertained from the population-based Danish Twin Register. Based on a standard 75 g oral glucose tolerance test and current WHO criteria we identified 62 pairs in which(More)
Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28(More)
Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins,(More)
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS We combined human insulin/glucose clamp physiological studies(More)
OBJECTIVE This cross-sectional clinical study compared the pathophysiology of type 2 diabetes in Japanese and Caucasians and investigated the role of demographic, genetic, and lifestyle-related risk factors for insulin resistance and β-cell response. RESEARCH DESIGN AND METHODS A total of 120 Japanese and 150 Caucasians were enrolled to obtain comparable(More)
Several epidemiological and metabolic studies have demonstrated an impact of the intrauterine environment on the development of disease in adult life, including Type 2 diabetes and glucose intolerance. Our finding of lower birth weights among monozygotic diabetic twins compared to their non-diabetic genetically identical co-twins confirms this association(More)
Genetic and environmental factors contribute to age-dependent susceptibility to type 2 diabetes. Recent studies have reported reduced expression of PPARgamma coactivator 1alpha (PGC-1alpha) and PGC-1beta genes in skeletal muscle from type 2 diabetic patients, but it is not known whether this is an inherited or acquired defect. To address this question we(More)
Previous studies have demonstrated an association between low weight at birth and risk of later development of non-insulin-dependent diabetes mellitus (NIDDM). It is not known whether this association is due to an impact of intrauterine malnutrition per se, or whether it is due to a coincidence between the putative "NIDDM susceptibility genotype" and a(More)
The etiology of type 2 diabetes is multifactorial, including genetic as well as pre- and postnatal factors that influence several different defects of glucose homeostasis, primarily in muscle, beta-cells, and liver. In the present twin study, we report heritability estimates (h(2)) for measures of insulin secretion, insulin resistance, hepatic glucose(More)