Learn More
In this paper, we train a semantic parser that scales up to Freebase. Instead of relying on annotated logical forms, which is especially expensive to obtain at large scale, we learn from question-answer pairs. The main challenge in this setting is narrowing down the huge number of possible logical predicates for a given question. We tackle this problem in(More)
We present an unsupervised approach to symmetric word alignment in which two simple asymmetric models are trained jointly to maximize a combination of data likelihood and agreement between the models. Compared to the standard practice of intersecting predictions of independently-trained models, joint training provides a 32% reduction in AER. Moreover, a(More)
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer(More)
We present a perceptron-style discriminative approach to machine translation in which large feature sets can be exploited. Unlike discriminative reranking approaches, our system can take advantage of learned features in all stages of decoding. We first discuss several challenges to error-driven discriminative approaches. In particular, we explore different(More)
We present a method for learning bilingual translation lexicons from monolingual corpora. Word types in each language are characterized by purely monolingual features, such as context counts and orthographic substrings. Translations are induced using a generative model based on canonical correlation analysis, which explains the monolingual lexicons in terms(More)
A central problem in grounded language acquisition is learning the correspondences between a rich world state and a stream of text which references that world state. To deal with the high degree of ambiguity present in this setting, we present a generative model that simultaneously segments the text into utterances and maps each utterance to a meaning(More)
A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on(More)
We present a nonparametric Bayesian model of tree structures based on the hierarchical Dirichlet process (HDP). Our HDP-PCFG model allows the complexity of the grammar to grow as more training data is available. In addition to presenting a fully Bayesian model for the PCFG, we also develop an efficient variational inference procedure. On synthetic data, we(More)