Per Rudquist

Learn More
We carry out the first study of smectic liquid crystalline colloidal shells and investigate how their complex internal structure depends on the director configuration in the nematic phase, preceding the smectic phase on cooling. Differences in the free energy cost of director bend and splay give an initial skewed distribution of topological defects in the(More)
Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be(More)
The design, construction, and evaluation of a laser beam steerer that uses two binary ferroelectric liquid-crystal (FLC) spatial light modulators (SLMs) operated in conjunction are presented. The system is characterized by having few components and is in principle lossless. Experimentally, a throughput of approximately 20% was achieved. The simple system(More)
Antiferroelectric liquid crystal materials are very promising for high-resolution displays but so far suffer from two serious problems, both of which reduce the achievable contrast. These materials are first of all very hard to align to a high quality dark state. Most often this has been attributed to the fact that antiferroelectric materials lack a nematic(More)
Recently, the emergence of spontaneous reflection-symmetry-broken configurations in achiral chromonic liquid crystals confined in cylindrical capillaries with homeotropic anchoring at the cylinder walls was reported, namely, the so-called twisted-escaped radial (TER) and twisted planar polar (TPP) configurations. This new example of spontaneous reflection(More)
Despite more than ten years of R&D in antiferroelectric liquid crystal displays (AFLCDs), this very promising technology has not yet reached the market. The main reason for this is the bad dark state due to light leakage from imperfections of the LC alignment and from the pretransitional effect. We have found that both problems are eliminated by using AFLC(More)
We have studied the analog (V-shaped switching) mode in ferroelectric liquid crystals in reflective mode for analog phase modulation applications. We have found that several combinations of cell thicknesses and input polarization states exist for which near-lossless analog phase modulation with a range of approximately 2pi rad is obtained, and we(More)
The analog switching mode in ferroelectric liquid crystals, sometimes referred to as 'V-shaped switching,' has, thanks to its submillisecond switching capability, attracted much interest for future fast electro-optic displays where it is to be used for amplitude modulation. We have studied this mode for analog phase-only modulation. As V-shaped switching is(More)
The optic, electro-optic, and dielectric properties of antiferroelectric liquid crystals (AFLCs) are analyzed and discussed in terms of the local tilt plane orientation. We show that the so-called pretransitional effect is a combination of two different electro-optic modes: the field-induced antiphase distortion of the antiferroelectric structure and the(More)