Per Olof Hasselgren

Learn More
Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt(More)
The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to(More)
Muscle wasting is a major feature of the cachexia asso-One Joslin Place ciated with diverse pathologies such as cancer, bacte-Several cytokines have been implicated in the patho-8 Department of Pediatrics genesis of muscle wasting, most notably TNF-␣, a proin-9 Department of Physical Medicine flammatory cytokine that was originally called " cachec-and(More)
Recent studies suggest that sepsis-induced increase in muscle proteolysis mainly reflects energy-ubiquitin-dependent protein breakdown. We tested the hypothesis that glucocorticoids activate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis. Rats underwent induction of sepsis by cecal ligation and puncture or were(More)
Previous studies provided evidence that sepsis-induced muscle proteolysis in experimental animals is caused by increased ubiquitin-proteasome-dependent protein breakdown. It is not known if a similar mechanism accounts for muscle proteolysis in patients with sepsis. We determined mRNA levels for ubiquitin and the 20 S proteasome subunit HC3 by Northern blot(More)
We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal(More)
Sepsis-induced muscle wasting has severe clinical consequences, including muscle weakness, need for prolonged ventilatory support and stay in the intensive care unit, and delayed ambulation with risk for pulmonary and thromboembolic complications. Understanding molecular mechanisms regulating loss of muscle mass in septic patients therefore has significant(More)
Sepsis, severe injury, and cancer are associated with loss of muscle mass. Muscle wasting in these conditions is mainly caused by increased proteolysis, at least in part regulated by nuclear factor-kappaB. Despite recent progress in the understanding of mediators and mechanisms involved in muscle wasting, effective and universally accepted treatments by(More)
Sepsis is associated with increased muscle proteolysis and upregulated transcription of several genes in the ubiquitin-proteasome proteolytic pathway. Glucocorticoids are the most important mediator of sepsis-induced muscle cachexia. Here, we examined the influence of sepsis in rats on the transcription factors NF-kappaB and AP-1 in skeletal muscle and the(More)
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that(More)