Per-Olof Åstrand

Learn More
We present a study of the blueshift of the n-->pi* electronic transition in formaldehyde in aqueous solution using a combined coupled cluster/molecular mechanics model including mutual polarization effects in the Hamiltonian. In addition, we report ground and excited state dipole moments. Configurations are generated from molecular dynamics simulations with(More)
Molecular dynamics simulations have been performed with two reactive force fields to investigate the structure of a Pt100 cluster adsorbed on the three distinct sides of a carbon platelet. A revised Reax force field for the carbon-platinum system is presented. In the simulations, carbon platelet edges both with and without hydrogen termination have been(More)
The frequency-dependent polarizability of the 20 essential amino acids has been calculated by an electrostatic interaction model where an Unsöld-type of model has been adopted for the frequency dependence. The interaction model has previously been parametrized from Hartree-Fock calculations on a set of molecules, and the model is in this work extended by(More)
With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative(More)
Optical rotation of 14 molecules containing the pyrrole group is calculated by employing both time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the second-order approximate coupled-cluster singles and doubles (CC2) method. All optical rotations have been provided using the aug-cc-pVDZ basis set at λ = 589 nm. The two methods(More)
In this work, interactions between carboxylate ions and calcium or sodium ions are investigated via density functional theory (DFT). Despite the ubiquitous presence of these interactions in natural and industrial chemical processes, few DFT studies on these systems exist in the literature. Special focus has been placed on determining the influence of the(More)
An open source software system called GaussDal for management of results from quantum chemical computations is presented. Chemical data contained in output files from different quantum chemical programs are automatically extracted and incorporated into a relational database (PostgreSQL). The Structural Query Language (SQL) is used to extract combinations of(More)
We have implemented analytical second-moment gradients for Hartree-Fock and multiconfigurational self-consistent-field wave functions. The code is used to calculate atomic dipole moments based on the generalized atomic polar tensor (GAPT) formalism [Phys. Rev. Lett. 62, 1469 (1989)], and the proposal of Dinur and Hagler (DH) for the calculation of atomic(More)
We have calculated the optical rotation at λ = 589 nm for 45 fluorinated alcohols, amines, amides, and esters using both time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the second-order approximate coupled-cluster singles and doubles (CC2) method, where the aug-cc-pVDZ basis set was adopted in both methods. Comparison of(More)
Liquid water is investigated theoretically using combined molecular dynamics (MD) simulations and accurate electronic structure methods. The statistical mechanically averaged molecular properties of liquid water are calculated using the combined coupled cluster/molecular mechanics (CC/MM) method for a large number of configurations generated from MD(More)