Penny Nymark

Learn More
Asbestos-exposure is associated with an increased risk of lung cancer, one of the leading causes of cancer deaths worldwide. Asbestos is known to induce DNA and chromosomal damage as well as aberrations in signalling pathways, such as the MAPK and NF-kappaB cascades, crucial for cellular homeostasis. The alterations result from both indirect effects through(More)
Asbestos is a well-known lung cancer-causing mineral fiber. In vitro and in vivo experiments have shown that asbestos can cause chromosomal damage and aberrations. Lung tumors, in general, have several recurrently amplified and deleted chromosomal regions. To investigate whether a distinct chromosomal aberration profile could be detected in the lung tumors(More)
Asbestos is a pulmonary carcinogen known to give rise to DNA and chromosomal damage, but the exact carcinogenic mechanisms are still largely unknown. In this study, gene expression arrays were performed on lung tumor samples from 14 heavily asbestos-exposed and 14 non-exposed patients matched for other characteristics. Using a two-step statistical analysis,(More)
Several chromosomal regions are recurrently amplified or deleted in lung tumors, but little is known about the underlying genes, which could be important mediators in tumor formation or progression. In lung cancer, the RB1-CCND1-CDKN2A pathway, involved in the G1-S transition, is damaged in nearly all tumors. In the present study, we localized a novel(More)
Asbestos has been shown to cause chromosomal damage and DNA aberrations. Exposure to asbestos causes many lung diseases e.g. asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. We exposed the human cell lines A549, Beas-2B and Met5A to crocidolite asbestos and determined time-dependent gene(More)
Silver nanoparticles (AgNPs) are widely utilized in various consumer products and medical devices, especially due to their antimicrobial properties. However, several studies have associated these particles with toxic effects, such as inflammation and oxidative stress in vivo and cytotoxic and genotoxic effects in vitro. Here, we assessed the genotoxic(More)
Some multi-walled carbon nanotubes (MWCNTs) induce mesothelioma in rodents, straight MWCNTs showing a more pronounced effect than tangled MWCNTs. As primary and secondary genotoxicity may play a role in MWCNT carcinogenesis, we used a battery of assays for DNA damage and micronuclei to compare the genotoxicity of straight (MWCNT-S) and tangled MWCNTs(More)
Lung cancer has the highest mortality rate of all of the cancers in the world and asbestos-related lung cancer is one of the leading occupational cancers. The identification of asbestos-related molecular changes has long been a topic of increasing research interest. The aim of this study was to identify novel asbestos-related molecular correlates by(More)
Five to seven percent of lung tumours are estimated to occur because of occupational asbestos exposure. Using cDNA microarrays, we have earlier detected asbestos exposure-related genomic regions in lung cancer. The region at 2p was one of those that differed most between asbestos-exposed and non-exposed patients. Now, we evaluated genomic alterations at(More)
Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important(More)