Penny N Newson

Learn More
Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent(More)
Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain(More)
Capsaicin, the hot chemical in chillies, administered to neonatal rats, causes destruction of polymodal nociceptive primary afferent neurons by acting on TRPV1 receptors causing intrinsic somatosensory deprivation. Although the effects of neonatal capsaicin treatment in the periphery have been extensively investigated, less is known about the brain networks(More)
The present study examined the influence of short- and long-term chronic intermittent immobilization stress throughout the brain and on the adrenal medulla of intact rats using Fos-like immunoreactivity (Fos-LI) as a marker of cellular activation. The effect of adreno-medullectomy on the central nervous system (CNS) response to chronic immobilization stress(More)
The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine days on the repeated mild stress response induced by daily subcutaneous injections and on the severe acute stress induced by morphine withdrawal were investigated in guinea-pigs. The NK(1) receptor antagonist, L733,060, 0.25mg/kg, significantly increased(More)
  • 1