Penny J Beuning

Learn More
The observation that mutations in the Escherichia coli genes umuC+ and umuD+ abolish mutagenesis induced by UV light strongly supported the counterintuitive notion that such mutagenesis is an active rather than passive process. Genetic and biochemical studies have revealed that umuC+ and its homolog dinB+ encode novel DNA polymerases with the ability to(More)
UmuD(2) cleaves and removes its N-terminal 24 amino acids to form UmuD'(2), which activates UmuC for its role in UV-induced mutagenesis in Escherichia coli. Cells with a non-cleavable UmuD exhibit essentially no UV-induced mutagenesis and are hypersensitive to killing by UV light. UmuD binds to the beta processivity clamp ("beta") of the replicative DNA(More)
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the(More)
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural,(More)
The cytosine analog 1,3-diaza-2-oxophenothiazine (tC) is a fluorescent nucleotide that forms Watson-Crick base pairs with dG. The Klenow fragment of DNA polymerase I (an A-family polymerase) can efficiently bypass tC on the template strand and incorporate deoxyribose-triphosphate-tC into the growing primer terminus. Y-family DNA polymerases are known for(More)
Editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for accurate translation of the genetic code. To date, this activity, whereby misactivated amino acids are hydrolyzed either before or after transfer to noncognate tRNAs, has been characterized extensively only in the case of class I synthetases. Class II synthetases have an active-site(More)
The cellular response to DNA damage in Escherichia coli is controlled in part by the activity of the umuD gene products. The full-length dimeric UmuD(2) is the initial product that is expressed shortly after the induction of the SOS response and inhibits bacterial mutagenesis, allowing for error-free repair to occur. Over time, the slow auto-cleavage of(More)
DNA polymerases of the Y family promote survival by their ability to synthesize past lesions in the DNA template. One Escherichia coli member of this family, DNA pol V (UmuC), which is primarily responsible for UV-induced and chemically induced mutagenesis, possesses a canonical beta processivity clamp-binding motif. A detailed analysis of this motif in DNA(More)
Discovery of EX1 kinetics in hydrogen exchange (HX) mass spectrometry (MS) experiments is rare. Proteins follow the EX1 kinetic regime when cooperative unfolding events simultaneously expose multiple residues to solvent such that they all become deuterated together before the region is able to refold. A number of factors can contribute to what we call(More)
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to cognate tRNAs in a two-step process that is critical for the faithful translation of genetic information. During the first chemical step of tRNA aminoacylation, noncognate amino acids that are smaller than or isosteric with the cognate substrate can be misactivated. Thus, to(More)