Penny Beuning

Learn More
Transfer of alanine from Escherichia coli alanyl-tRNA synthetase (AlaRS) to RNA minihelices that mimic the amino acid acceptor stem of tRNA(Ala) has been shown, by analysis of variant minihelix aminoacylation activities, to involve a transition state sensitive to changes in the 'discriminator' base at position 73. Solution NMR has indicated that this(More)
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS(More)
All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains(More)
The alpha subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the alpha subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the alpha subunit is shown to have an affinity for both(More)
With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular(More)
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the(More)
Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD(More)
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA(More)
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information(More)
  • 1