Learn More
Hexokinase II is a key enzyme in the glycolytic pathway and possesses anti-apoptotic properties in tumor cells. The present study aimed to analyze the expression of hexokinase II and its clinical correlation with clinical factors in patients with hepatocellular carcinoma who treated surgically in China. Reverse transcription-polymerase chain reaction and(More)
We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites,(More)
The atomic layer of hybridized hexagonal boron nitride (h-BN) and graphene has attracted a great deal of attention after the pioneering work of P. M. Ajayan et al. on Cu foils because of their unusual electronic properties (Ci, L. J.; et al. Nat. Mater. 2010, 9, 430-435). However, many fundamental issues are still not clear, including the in-plane atomic(More)
We performed synchrotron x-ray diffraction and infrared (IR) experiments combined with evolutionary structure predictions and band structure calculations on Ag 2 Se to ß20 GPa. We present evidence for phase I (β-Ag 2 Se) as a potential three-dimensional topological insulator by its increase in optical band gap and the topologically nontrivial nature of its(More)
In-plane heterostructure of hexagonal boron nitride and graphene (h-BN-G) has become a focus of graphene research owing to its tunable bandgap and intriguing properties. We report herein the synthesis of a quasi-freestanding h-BN-G monolayer heterostructure on a weakly coupled Ir(111) substrate, where graphene and h-BN possess distinctly different heights(More)
We investigated the feasibility of the combined detection of HLA-A2/MAGE-A3 epitope-specific cytotoxic T lymphocytes (CTLs) and serum alpha-fetoprotein (AFP) for specific diagnosis of hepatocellular carcinoma (HCC). We detected the frequency of MAGE-A3 epitopes (p112-120, KVAELVHFL) in spontaneous CTLs in the peripheral blood of HCC patients, liver(More)
This corrosion: Octahedral Pt-Ni alloy nanoparticles (NPs) are converted into concave Pt(3)Ni NPs by a coordination-assisted chemical-etching process. The corroded concave Pt-Ni NPs have a higher density of low-coordinate atoms in steps sites, a decisive property in heterogeneous catalysis.
We demonstrated an approach to effectively apply in-plane pressures to molecular layers by utilizing the substrate confinement effect. The compressed crystal structure and mechanical behaviors of carbon monoxide (CO) monolayer subjected to the confinement of Cu(100) substrate were jointly investigated by low temperature scanning tunneling microscopy(More)
To resolve the controversy over the functionalization effect on conductivity, we systematically investigate the structural and electronic properties of graphene covalently functionalized with phenyl groups. Using first-principles calculations combined with the model Hamiltonian analysis, we find that the structural stability, electronic and transport(More)
It is highly desirable to integrate graphene into existing semiconductor technology, where the combined system is thermodynamically stable yet maintain a Dirac cone at the Fermi level. First-principles calculations reveal that a certain transition metal (TM) intercalated graphene/SiC(0001), such as the strongly bound graphene on SiC with Mn intercalation,(More)