Peng Wang

Learn More
Depth estimation and semantic segmentation are two fundamental problems in image understanding. While the two tasks are strongly correlated and mutually beneficial, they are usually solved separately or sequentially. Motivated by the complementary properties of the two tasks, we propose a unified framework for joint depth and semantic prediction. Given an(More)
Segmenting semantic objects from images and parsing them into their respective semantic parts are fundamental steps towards detailed object understanding in computer vision. In this paper, we propose a joint solution that tackles semantic object and part segmentation simultaneously, in which higher object-level context is provided to guide part(More)
Parsing human body into semantic regions is crucial to human-centric analysis. In this paper, we propose a segment-based parsing pipeline that explores human pose information, i.e. the joint location of a human model, which improves the part proposal, accelerates the inference and regularizes the parsing process at the same time. Specifically , we first(More)
Parsing human into semantic parts is crucial to human-centric analysis. In this paper, we propose a human parsing pipeline that uses pose cues, i.e., estimates of human joint locations, to provide pose-guided segment proposals for semantic parts. These segment proposals are ranked using standard appearance cues, deep-learned semantic feature, and a novel(More)
Parsing human regions into semantic parts, e.g., body, head and arms etc., from a random natural image is challenging while fundamental for computer vision and widely applicable in industry. One major difficulty to handle such a problem is the high flexibility of scale and location of a human instance and its corresponding parts, making the parsing task(More)
Parsing articulated objects, e.g. humans and animals, into semantic parts (e.g. body, head and arms, etc.) from natural images is a challenging and fundamental problem for computer vision. A big difficulty is the large variability of scale and location for objects and their corresponding parts. Even limited mistakes in estimating scale and location will(More)
  • 1