Peng Wang

Learn More
Depth estimation and semantic segmentation are two fundamental problems in image understanding. While the two tasks are strongly correlated and mutually beneficial, they are usually solved separately or sequentially. Motivated by the complementary properties of the two tasks, we propose a unified framework for joint depth and semantic prediction. Given an(More)
Segmenting semantic objects from images and parsing them into their respective semantic parts are fundamental steps towards detailed object understanding in computer vision. In this paper, we propose a joint solution that tackles semantic object and part segmentation simultaneously, in which higher object-level context is provided to guide part(More)
Parsing human regions into semantic parts, e.g., body, head and arms etc., from a random natural image is challenging while fundamental for computer vision and widely applicable in industry. One major difficulty to handle such a problem is the high flexibility of scale and location of a human instance and its corresponding parts, making the parsing task(More)
Parsing human into semantic parts is crucial to human-centric analysis. In this paper, we propose a human parsing pipeline that uses pose cues, i.e., estimates of human joint locations, to provide pose-guided segment proposals for semantic parts. These segment proposals are ranked using standard appearance cues, deep-learned semantic feature, and a novel(More)
Parsing human body into semantic regions is crucial to human-centric analysis. In this paper, we propose a segment-based parsing pipeline that explores human pose information, i.e. the joint location of a human model, which improves the part proposal, accelerates the inference and regularizes the parsing process at the same time. Specifically , we first(More)
This paper introduces an approach to regularize 2.5D surface normal and depth predictions at each pixel given a single input image. The approach infers and reasons about the underlying 3D planar surfaces depicted in the image to snap predicted normals and depths to inferred planar surfaces, all while maintaining fine detail within objects. Our approach(More)
PASCAL VOC Segmentation Challenge [10] is currently considered as one of the datasets that reflect the image segmentation difficulties for real world scenarios [29]. However, current evaluation is simply based on a single Inter-section Over Union (IOU) score. In this paper, we try to discover the error factors under the IOU, which makes the results more(More)