Learn More
Convolutional neural network (CNN) has been widely employed for image recognition because it can achieve high accuracy by emulating behavior of optic nerves in living creatures. Recently, rapid growth of modern applications based on deep learning algorithms has further improved research and implementations. Especially, various accelerators for deep CNN have(More)
Many face recognition algorithms use “distance-based” methods: Feature vectors are extracted from each face and distances in feature space are compared to determine matches. In this paper, we argue for a fundamentally different approach. We consider each image as having been generated from several underlying causes, some of which are due to(More)
The main theme of this paper is to develop a novel eigenvalue optimization framework for learning a Mahalanobis metric. Within this context, we introduce a novel metric learning approach called DML-eig which is shown to be equivalent to a well-known eigenvalue optimization problem called minimizing the maximal eigenvalue of a symmetric matrix (Overton,(More)
We present a fast and efficient combinatorial algorithm to simultaneously identify the candidate locations as well as the sizes of the buffers driving a clock mesh. Due to the high redundancy, a mesh architecture offers high tolerance towards variation in the clock skew. However, such a redundancy comes at the expense of mesh wire length and power(More)
Recently, there is a considerable amount of efforts devoted to the problem of unconstrained face verification, where the task is to predict whether pairs of images are from the same person or not. This problem is challenging and difficult due to the large variations in face images. In this paper, we develop a novel regularization framework to learn(More)
Programs written for GPUs often contain correctness errors such as races, deadlocks, or may compute the wrong result. Existing debugging tools often miss these errors because of their limited input-space and execution-space exploration. Existing tools based on conservative static analysis or conservative modeling of SIMD concurrency generate false alarms(More)
Integer overflow bugs in C and C++ programs are difficult to track down and may lead to fatal errors or exploitable vulnerabilities. Although a number of tools for finding these bugs exist, the situation is complicated because not all overflows are bugs. Better tools need to be constructed, but a thorough understanding of the issues behind these errors does(More)
In traditional information-flow type systems, the security policy is often formalized as noninterference properties. However, noninterference alone is too strong to express security properties useful in practice. If we allow downgrading in such systems, it is challenging to formalize the security policy as an extensional property of the system.This paper(More)
Arabidopsis thaliana Protein Interactome Database (AtPID) is an object database that integrates data from several bioinformatics prediction methods and manually collected information from the literature. It contains data relevant to protein-protein interaction, protein subcellular location, ortholog maps, domain attributes and gene regulation. The predicted(More)
Keyphrases are widely used as a brief summary of documents. Since manual assignment is time-consuming, various unsupervised ranking methods based on importance scores are proposed for keyphrase extraction. In practice, the keyphrases of a document should not only be statistically important in the document, but also have a good coverage of the document.(More)