Learn More
Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress,(More)
The Period2 gene plays a key role in controlling circadian rhythm in mice. We report here that mice deficient in the mPer2 gene are cancer prone. After gamma radiation, these mice show a marked increase in tumor development and reduced apoptosis in thymocytes. The core circadian genes are induced by gamma radiation in wild-type mice but not in mPer2 mutant(More)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and(More)
Reactive oxygen species (ROS) stimulate cell proliferation and induce genetic instability, and their increase in cancer cells is often viewed as an adverse event. Here, we show that such abnormal increases in ROS can be exploited to selectively kill cancer cells using beta-phenylethyl isothiocyanate (PEITC). Oncogenic transformation of ovarian epithelial(More)
Reactive oxygen species (ROS) are constantly generated and eliminated in the biological system, and play important roles in a variety of normal biochemical functions and abnormal pathological processes. Growing evidence suggests that cancer cells exhibit increased intrinsic ROS stress, due in part to oncogenic stimulation, increased metabolic activity, and(More)
Popular online social networks (OSNs) like Facebook and Twitter are changing the way users communicate and interact with the Internet. A deep understanding of user interactions in OSNs can provide important insights into questions of human social behavior and into the design of social platforms and applications. However, recent studies have shown that a(More)
Cancer cells generally exhibit increased glycolysis for ATP generation (the Warburg effect) due in part to mitochondrial respiration injury and hypoxia, which are frequently associated with resistance to therapeutic agents. Here, we report that inhibition of glycolysis severely depletes ATP in cancer cells, especially in clones of cancer cells with(More)
Therapeutic selectivity is one of the most important considerations in cancer chemotherapy. The design of therapeutic strategies to preferentially kill malignant cells while minimizing harmful effects to normal cells depends on our understanding of the biological differences between cancer and normal cells. We have previously demonstrated that certain(More)
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the(More)