Learn More
Four aminooligosaccharides were isolated and purified from the culture filtrate of Streptomyces coelicoflavus ZG0656. Their chemical structures were determined by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. The names acarviostatins I03, II03, III03, and IV03 were given to(More)
Using laboratory and field experiments, the ability of Streptomyces aureus HP-S-01 to eliminate β-cypermethrin (β-CP) and its metabolite 3-phenoxybenzaldehyde (3-PBA) in soils was investigated. In the laboratory, 80.5% and 73.1% of the initial dose of β-CP and 3-PBA (50 mg kg−1) was removed in sterilized soils within 10 days, respectively, while in the same(More)
Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly(More)
Human pancreatic α-amylase (HPA) catalyzes the hydrolysis of α-d-(1,4) glycosidic linkages in starch and is one of the major therapeutic targets for type II diabetes. Several acarviostatins isolated from Streptomyces coelicoflavus var. nankaiensis previously showed more potent inhibition of HPA than acarbose, which has been successfully used in clinical(More)
A novel amino-oligosaccharide, named SF638-1, was isolated from the culture filtrate of the Streptomyces strain PW638. Its chemical structure was determined by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and two-dimensional nuclear magnetic resonance spectroscopy. The novel compound was a mixed inhibitor of human pancreatic α-amylase, with(More)
Degradation of cypermethrin was significantly enhanced in a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. In the pure culture, longer half-lives (t(1/2)=32.6-43.0h) of cypermethrin were observed, as compared to the mixed cocultures (t(1/2)=13.0h). The optimal degradation conditions were determined to be 28.2°C and pH 7.5 based on(More)
Both total alkaloids from Feculae Bombycis (TAFB) and natural flavonoids can inhibit alpha-glucosidase activity to depress the glucose level in blood. To investigate the cooperative effect of TAFB and flavonoids on blood glucose, we have studied their combined function compared with individual ingredients on enzymology, in-vitro and in-vivo. In the(More)
Glucagon-like peptide-1 (GLP-1) has considerable potential as a possible therapeutic agent for type-2 diabetes. Unfortunately, this glucoincretin is short lived due to degradation by dipeptidyl-peptidase IV and rapid clearance by renal filtration. In this study, we attempted to extend GLP-1 action through the attachment of a lysine residue at the N-terminal(More)
Glucagon-like peptide-1 (GLP-1) stimulates insulin and inhibits glucagon secretion and therefore could potentially be used to treat diabetes type II. However, its therapeutic use is limited by its short half-life in vivo, due mainly to enzymatic degradation by dipeptidyl peptidase IV (DPP-IV). Developing GLP-1 analogs with greater bioactivity is therefore(More)
AIM To investigate the anti-asthmatic mechanisms of the traditional Chinese medicine Pericarpium citri reticulatae (PCR). METHODS The alkaloid section (AS) of PCR was extracted using an ion exchange resin, separated, and purified into different fractions by semi-preparative HPLC. These fractions were screened for beta2-adrenergic receptor (beta(2)AR)(More)