Penelope Hogarth

Learn More
BACKGROUND Deep-brain stimulation is the surgical procedure of choice for patients with advanced Parkinson's disease. The globus pallidus interna and the subthalamic nucleus are accepted targets for this procedure. We compared 24-month outcomes for patients who had undergone bilateral stimulation of the globus pallidus interna (pallidal stimulation) or(More)
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) and subthalamic nucleus (STN) has been reported to relieve motor symptoms and levodopa-induced dyskinesia in patients with advanced Parkinson disease (PD). Although it has been suggested that stimulation of the STN may be superior to stimulation of the GPi, comparative trials are(More)
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion of glutamine repeats in ubiquitously distributed huntingtin protein. Recent studies have shown that mutant huntingtin interferes with the function of widely expressed transcription factors, suggesting that gene expression may be altered in a variety of tissues in HD,(More)
CONTEXT Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. OBJECTIVE To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. DESIGN, SETTING, AND PATIENTS(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a triplet (CAG) expansion mutation. The length of the triplet repeat is the most important factor in determining age of onset of HD, although substantial variability remains after controlling for repeat length. The Venezuelan HD kindreds encompass 18,149 individuals(More)
OBJECTIVES Our objective was to compare long-term outcomes of deep brain stimulation (DBS) of the globus pallidus interna (GPi) and subthalamic nucleus (STN) for patients with Parkinson disease (PD) in a multicenter randomized controlled trial. METHODS Patients randomly assigned to GPi (n = 89) or STN DBS (n = 70) were followed for 36 months. The primary(More)
Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features(More)
Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the(More)
With prospects improving for experimental therapeutics aimed at postponing the onset of illness in preclinical carriers of the Huntington's disease (HD) gene, we assessed agreement among experienced clinicians with respect to the motor manifestations of HD, a relevant outcome measure for preventive trials in this population. Seventy-five clinicians(More)
Neurodegeneration with brain iron accumulation (NBIA) encompasses a group of inherited disorders that share the clinical features of an extrapyramidal movement disorder accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia. The genetic basis of ten forms of NBIA is now known. The clinical features of(More)