Learn More
To establish a framework for extrapolating the helix-forming properties of peptides from TFE/H2O mixtures (TFE = 2,2, 2-trifluoroethanol) back to water, the thermal unfolding curves have been measured by circular dichroism for four repeating-sequence peptides, with chain lengths from 7 to 22 residues. The unfolding curves were measured between 0 and 50(More)
We report an enthalpic factor involved in determining helix propensities of nonpolar amino acids. Thermal unfolding curves of the five 13-residue peptides, Ac-KA4XA4KGY-NH2 (X = Ala, Leu, Ile, Val, Gly), have been measured by using CD in water/trifluoroethanol (TFE) mixtures. The peptide helix contents show that the rank order of helix propensities changes(More)
The alanine helix provides a model system for studying the energetics of interaction between water and the helical peptide group, a possible major factor in the energetics of protein folding. Helix formation is enthalpy-driven (-1.0 kcal/mol per residue). Experimental transfer data (vapor phase to aqueous) for amides give the enthalpy of interaction with(More)
Pairs of leucine side chains, spaced either (i,i+3) or (i,i+4), are known to stabilize alanine-based peptide helices, Experiments with new peptide sequences confirm that the (i,i+4) pair interaction is markedly stronger than the (i,i+3) pair interaction. This result is not expected from reported Monte Carlo simulations, which predict that the (i,i+3)(More)
  • 1