Learn More
The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of(More)
In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage(More)
  • 1