Pei-Luen Jiang

Learn More
Accumulation of oil bodies was successfully induced in a microalga, Chlorella sp., cultured in a nitrogen-limited medium. The oil bodies were initially assembled as many small entities (mostly 0.1-1 μm), and lately found as a major irregular compartment (>3 μm) occupying more than half of the cell space. Approximately, two thirds of oil bodies isolated from(More)
Stable oil bodies were purified from mature lily (Lilium longiflorum Thunb.) pollen. The integrity of pollen oil bodies was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Immunodetection revealed that a major protein of 18 kDa was exclusively present in pollen oil bodies and massively accumulated(More)
Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic(More)
The endosymbiotic relationship between coral hosts and dinoflagellates of the genus Symbiodinium is critical for the growth and productivity of coral reef ecosystems. Here, synchrotron radiation-based infrared microspectroscopy was applied to examine metabolite concentration differences between endosymbiotic (within the anemone Aiptasia pulchella) and(More)
Oil bodies of similar sizes were observed in the cells of embryo and aleurone layer of rice seeds, and remained their structural integrity in vitro after isolation. Comparably, two abundant oleosin isoforms were found in both preparations of oil bodies isolated from the embryo and the aleurone layer. Immunological detection and mass spectrometric analyses(More)
The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days.(More)
Numerous oil bodies of 0.2-2 μm occupied approximately 80% of intracellular space in mature pine (Pinus massoniana) megagametophytes. They were stably isolated and found to comprise mostly triacylglycerols as examined by thin layer chromatography analysis and confirmed by both Nile red and BODIPY stainings. Fatty acids released from the triacylglycerols of(More)
Oleosin, the most abundant protein in oil bodies of all examined angiosperm seeds, has been demonstrated to serve as a structural protein to maintain the integrity of these lipid storage organelles. Caleosin, a minor protein in oil bodies of angiosperm seeds, is assumed to anchor to the organelles in a manner similar to oleosin, i.e., via its central(More)
Oil bodies formed in Auxenochlorella protothecoides induced during limited nutrition had a coating of caleosin. The total lipid content obtained from A. protothecoides in unstressed cultures (first week) was ~210 mg/g compared to the 231 mg/g obtained in the third week (nutrient limited) and 290 mg/g obtained in the fourth week (nutrient limited). The(More)
In view of the recent isolation of stable oil bodies as well as a unique oleosin from lily pollen, this study examined whether other minor proteins were present in this lipid-storage organelle. Immunological cross-recognition using antibodies against three minor oil-body proteins from sesame suggested that a putative caleosin was specifically detected in(More)