Pei-Kuen Wei

Learn More
Type Ib diamonds emit bright fluorescence at 550-800 nm from nitrogen-vacancy point defects, (N-V)(0) and (N-V)(-), produced by high-energy ion beam irradiation and subsequent thermal annealing. The emission, together with noncytotoxicity and easiness of surface functionalization, makes nano-sized diamonds a promising fluorescent probe for single-particle(More)
BACKGROUND Understanding the endocytosis process of gold nanoparticles (AuNPs) is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In(More)
The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium(More)
Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce(More)
A simple surface plasmon resonance (SPR) ellipsometry equipped with a dove prism and micro-fluidic flow cell is adopted to investigate and study basic properties of biomolecular interaction. Using a dove prism greatly simplifies the optical alignment and the use of micro-fluidic cell helps reduce significantly the volume of the biological sample required in(More)
Synthetic peptides have been developed for therapeutic applications for decades. The therapeutic efficacy often depends not only on the stabilization of the peptides but also on their binding specificity and affinity to the target molecules to interfere with designated molecular interaction. In this study, the binding affinity of human intercellular(More)
A cost-effective, stable and ultrasensitive localized surface plasmon resonance (LSPR) sensor based on gold nanoparticles (AuNPs) partially embedded in transparent substrate is presented. Partially embedded AuNPs were prepared by thermal annealing of gold thin films deposited on glass at a temperature close to the glass transition temperature of the(More)
Surface sensitivity is an important factor that determines the minimum amount of biomolecules detected by surface plasmon resonance (SPR) sensors. We propose the use of oblique-angle-induced Fano resonances caused by two-mode coupling or three-mode coupling between the localized SPR mode and long-range surface plasmon polariton modes to increase the surface(More)
We demonstrated a real-time monitoring of live cells upon laminar shear stress stimulation via surface plasmon resonance (SPR) in gold nanoslit array. A large-area gold nanostructure consisted of 500-nm-period nanoslits was fabricated on a plastic film using the thermal-annealed template-stripping method. The SPR in the gold nanoslit array provides high(More)
We present a method to couple surface plasmon polariton (SPP) guiding mode into dielectric-loaded SPP waveguide (DLSPPW) devices with spectral and mode selectivity. The method combined a transmission-mode near-field spectroscopy to excite the SPP mode and a leakage radiation optical microscope for direct visualization. By using a near-field fiber tip,(More)