Pei-Feng Chen

Learn More
Motion planning is one of the key capabilities for autonomous humanoid robots. Previous researches have focused on weight balancing, collision detection, and gait generation. Most planners either assume that the environment can be simplified to a 2D workspace or assume that the path is given. In this paper, we propose a motion planning system capable of(More)
14-3-3β is implicated in cell survival, proliferation, migration, and tumor growth; however, its clinical relevance in tumor progression and metastasis have never been elucidated. To evaluate the clinical significance of 14-3-3β, we analyzed the association of 14-3-3β expression and clinicopathologic characteristics in primary and subsequent metastatic(More)
Two regions, located at residues 594-606/614-645 and residues 1165-1178, are present in the reductase domain of human endothelial nitric-oxide synthase (eNOS) but absent in its counterpart, inducible nitric-oxide synthase (iNOS). We previously demonstrated that removing residues 594-606/614-645 resulted in an enzyme (Delta45) containing an intrinsic(More)
We investigated the plasma glucose-lowering mechanism(s) of Rh2, a ginsenoside derived from Panax ginseng, in rats with streptozotocin-induced diabetes (STZ-diabetic rats). After intravenous injection over 120 min into fasting STZ-diabetic rats, Rh2 decreased plasma glucose in a dose-dependent manner. In parallel to the lowering of plasma glucose, an(More)
Quiescent cells are considered to be dormant. However, recent studies suggest that quiescent fibroblasts possess active metabolic profile and certain functional characteristics. We previously observed that serum-starved quiescent fibroblasts respond to proinflammatory stimuli by robust expression of cyclooxygenase-2 (COX-2), which declines after the(More)
Embryonic stem cells (ESCs) are promising donor sources in cell therapies for various diseases. Although low levels of reactive oxygen species (ROS) are necessary for the maintenance of stem cells, increased ROS levels initiate differentiation and cell damage. We and others have previously demonstrated that heme oxygenase (HO)-1, a stress response protein(More)
Human endothelial nitric-oxide synthase (eNOS) is a complex enzyme, requiring binding of calmodulin (CaM) for electron transfer. The prevailing view is that calcium-activated CaM binds eNOS at the canonical binding site located at residues 493-510, which induces a conformational change to facilitate electron transfer. Here we demonstrated that the CaM(More)
BACKGROUND Human endothelial nitric oxide synthase (eNOS) requires calcium-bound calmodulin (CaM) for electron transfer but the detailed mechanism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using a series of CaM mutants with E to Q substitution at the four calcium-binding sites, we found that single mutation at any calcium-binding site (B1Q, B2Q, B3Q(More)
Successful design of a pH responsive polyelectrolyte-based virus delivery matrix with extracellular release triggered by tumor acidosis has been achieved. Recombinant adeno-associated virus serotype 2 (AAV2) is loaded in the polyelectrolyte-based matrix (AAV2-matrix), which is formed by a biodegradable copolymer of poly(polyethylene(More)