Learn More
Genome-wide association studies suggest that common genetic variants explain only a modest fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability. Although DNA sequencing costs have fallen markedly, they remain far from what is necessary for rare and novel(More)
The detection of sequence variation, for which DNA sequencing has emerged as the most sensitive and automated approach, forms the basis of all genetic analysis. Here we describe and illustrate an algorithm that accurately detects and genotypes SNPs from fluorescence-based sequence data. Because the algorithm focuses particularly on detecting SNPs through(More)
Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially(More)
BACKGROUND Familial dyskinesia with facial myokymia (FDFM) is an autosomal dominant disorder that is exacerbated by anxiety. In a 5-generation family of German ancestry, we previously mapped FDFM to chromosome band 3p21-3q21. The 72.5-Mb linkage region was too large for traditional positional mutation identification. OBJECTIVE To identify the gene(More)
The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500(More)
BACKGROUND Human exome sequencing is a recently developed tool to aid in the discovery of novel coding variants. Now broadly applied, exome sequencing data sets provide a novel opportunity to evaluate the allele frequencies of previously published pathogenic rare variants. METHODS AND RESULTS We examined the exome data set from the National Heart, Lung(More)
The distribution of fold-coverage of mappable, targeted bases (26.6 Mb), summed across the twelve exome datasets (318 Mb aggregate target), is shown. As potential PCR duplicates (reads with the same start-point and orientation within the same genomic library) have been filtered out, the maximum possible coverage of any given position is 152x (i.e. reads(More)
BACKGROUND- Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. METHODS AND RESULTS- We used an unbiased genome-wide approach using both linkage analysis and variant filtering(More)
We have established strong linkage evidence that supports mapping autosomal-dominant sensory/motor neuropathy with ataxia (SMNA) to chromosome 7q22-q32. SMNA is a rare neurological disorder whose phenotype encompasses both the central and the peripheral nervous system. In order to identify a gene responsible for SMNA, we have undertaken a comprehensive(More)