Pegah N. Abadian

Learn More
We present an automated method for isolating pure bacterial cultures from samples containing multiple species that exploits the cell's own physiology to perform the separation. Cells compete to reach a chamber containing nutrients via a constriction whose cross-sectional area only permits a single cell to enter, thereby blocking the opening and preventing(More)
This paper describes the use of Surface Plasmon Resonance imaging (SPRi) as an emerging technique to study bacterial physiology in real-time without labels. The overwhelming majority of bacteria on earth exist in large multicellular communities known as biofilms. Biofilms are especially problematic because they facilitate the survival of pathogens, leading(More)
This study investigated the ability of lubricin (LUB) to prevent bacterial attachment and proliferation on model tissue culture polystyrene surfaces. The findings from this study indicated that LUB was able to reduce the attachment and growth of Staphylococcus aureus on tissue culture polystyrene over the course of 24 h by approximately 13.9% compared to a(More)
Adenovirus infection, which is a waterborne viral disease, is one of the most prevelant causes of human morbidity in the world. Thus, methods for rapid detection of this infectious virus in the environment are urgently needed for public health protection. In this study, we developed a rapid, real-time, sensitive, and label-free SPRi-based biosensor for(More)
Surface Plasmon Resonance imaging (SPRi) was used for real-time detection of bacterial growth inside microfluidic channels. First, 50 micron diameter beads were spotted on a gold coated prism surface and visualized with both SPRi and a stereo microscope to validate images. Then, fluorescent Escherichia coli was loaded into microfluidic polydimethylsiloxane(More)
  • 1