Learn More
We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; www.yeastract.com) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence(More)
The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) information system (http://www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2010, this database contains over 48,200 regulatory associations between transcription factors (TFs)(More)
The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200,000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs.(More)
With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect(More)
The Yeast search for transcriptional regulators and consensus tracking (YEASTRACT) information system (www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in September 2007, this database contains over 30 990 regulatory associations between Transcription Factors (TFs)(More)
MOTIVATION Models of the dynamics of cellular interaction networks have become increasingly larger in recent years. Formal verification based on model checking provides a powerful technology to keep up with this increase in scale and complexity. The application of modelchecking approaches is hampered, however, by the difficulty for nonexpert users to(More)
MOTIVATION Investigating the relation between the structure and behavior of complex biological networks often involves posing the question if the hypothesized structure of a regulatory network is consistent with the observed behavior, or if a proposed structure can generate a desired behavior. RESULTS The above questions can be cast into a parameter(More)
We present a new edge betweenness metric for undirected and weighted graphs. This metric is defined as the fraction of minimum spanning trees where a given edge is present and it was motivated by the necessity of evaluating phy-logenetic trees. Moreover we provide results and methods concerning the exact computation of this metric based on the well known(More)
Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific(More)
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs,(More)