Learn More
Human embryonic stem cell (hESC) and reprogrammed/induced pluripotent stem cell (iPSC) research is becoming the ''flavor of the month'' for downstream applications such as drug screening, disease modeling, and future regenerative medicine and cell therapies [1–4]. Pluripotency (the ability to give rise to any cell type of the three germ layers: mesoderm,(More)
The TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with(More)
Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (TALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the(More)
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete(More)
Understanding the transcriptional cues that direct differentiation of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells to defined and functional cell types is essential for future clinical applications. In this study, we have compared transcriptional profiles of haematopoietic progenitors derived from hESCs at various(More)
Genetic manipulation of human embryonic stem cells (hESCs) is instrumental for tracing lineage commitment and to studying human development. Here we used hematopoietic-specific Wiskott-Aldrich syndrome gene (WAS)-promoter driven lentiviral vectors (LVs) to achieve highly specific gene expression in hESCs-derived hematopoietic cells. We first demonstrated(More)
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly(More)
  • 1