Learn More
The breakpoint distance is one of the most straightforward genome comparison measures. Surprisingly, when it comes to defining it precisely for multichromosomal genomes with both linear and circular chromosomes, there is more than one way to go about it. Pevzner and Tesler gave a definition in a 2003 paper, Tannier et al. defined it differently in 2008, and(More)
Algebraic rearrangement theory, as introduced by Meidanis and Dias, focuses on representing the order in which genes appear in chromosomes, and applies to circular chromosomes only. By shifting our attention to genome adjacencies, we introduce the adjacency algebraic theory, extending the original algebraic theory to linear chromosomes in a very natural(More)
UNLABELLED The Arthropodan Mitochondrial Genomes Accessible database (AMiGA) is a relational database developed to help in managing access to the increasing amount of data arising from developments in arthropodan mitochondrial genomics (136 mitochondrial genomes as of September 2005). The strengths of AMiGA include (1) a more accessible and up-to-date(More)
Recently, the Single-Cut-or-Join (SCJ) operation was proposed as a basis for a new rearrangement distance between multichromosomal genomes, leading to very fast algorithms, both in theory and in practice. However, it was not clear how well this new distance fares when it comes to using it to solve relevant problems, such as the reconstruction of(More)
The problem of reconstructing ancestral genomes in a given phylogenetic tree arises in many different comparative genomics fields. Here, we focus on reconstructing the gene order of ancestral genomes, a problem that has been largely studied in the past 20 years, especially with the increasing availability of whole genome DNA sequences. There are two main(More)
The breakpoint distance is one of the most straightforward genome comparison measures. Surprisingly, when it comes to define it precisely for multichromosomal genomes with both linear and circular chromosomes, there is more than one way to go about it. In this paper we study Single-Cut-or-Join (SCJ), a breakpoint-like rearrangement event for which we(More)
Structural variation in genomes can be revealed by many (dis)similarity measures. Rearrangement operations, such as the so called double-cut-and-join (DCJ), are large-scale mutations that can create complex changes and produce such variations in genomes. A basic task in comparative genomics is to find the rearrangement distance between two given genomes,(More)