Pedro F. Felzenszwalb

Learn More
This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces(More)
In this paper we present a computationally efficient framework for part-based modeling and recognition of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to represent an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled(More)
This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge in ten out of twenty categories. The system relies heavily(More)
Markov random field models provide a robust and unified framework for early vision problems such as stereo and image restoration. Inference algorithms based on graph cuts and belief propagation have been found to yield accurate results, but despite recent advances are often too slow for practical use. In this paper we present some algorithmic techniques(More)
We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one order of magnitude without sacrificing detection accuracy. In(More)
We describe a new hierarchical representation for two-dimensional objects that captures shape information at multiple levels of resolution. This representation is based on a hierarchical description of an object's boundary and can be used in an elastic matching framework, both for comparing pairs of objects and for detecting objects in cluttered images. In(More)
We describe linear-time algorithms for solving a class of problems that involve transforming a cost function on a grid using spatial information. These problems can be viewed as a generalization of classical distance transforms of binary images, where the binary image is replaced by an arbitrary function on a grid. Alternatively they can be viewed in terms(More)
We present a class of statistical models for part-based object recognition that are explicitly parameterized according to the degree of spatial structure they can represent. These models provide a way of relating different spatial priors that have been used for recognizing generic classes of objects, including joint Gaussian models and tree-structured(More)