Learn More
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth(More)
Using the (near) complete genome sequences of the yeasts Candida albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe, we address the evolution of a unique genetic code change, which involves decoding of the standard leucine-CTG codon as serine in Candida spp. By using two complementary comparative genomics approaches, we have been able to shed(More)
Protein post-translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications.(More)
SmartCell has been developed to be a general framework for modelling and simulation of diffusion-reaction networks in a whole-cell context. It supports localisation and diffusion by using a mesoscopic stochastic reaction model. The SmartCell package can handle any cell geometry, considers different cell compartments, allows localisation of species, supports(More)
Cross-talk between different types of post-translational modifications on the same protein molecule adds specificity and combinatorial logic to signal processing, but it has not been characterized on a large-scale basis. We developed two methods to identify protein isoforms that are both phosphorylated and ubiquitylated in the yeast Saccharomyces(More)
Traditionally, research has been reductionist, characterizing the individual components of biological systems. But new technologies have increased the size and scope of biological data, and systems approaches have broadened the view of how these components are interconnected. Here, we discuss how quantitative mapping of genetic interactions enhances our(More)
Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily moulded the contents of a given genome. Though the effect of knocking out or overexpressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To(More)
Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation,(More)
Assembly of a transcriptional and post-translational molecular interaction network in B cells, the human B-cell interactome (HBCI), reveals a hierarchical, transcriptional control module, where MYB and FOXM1 act as synergistic master regulators of proliferation in the germinal center (GC). Eighty percent of genes jointly regulated by these transcription(More)
The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study of the phosphoproteomes of three yeast species (Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces(More)