Payman Hojabrpour

Learn More
Bad is a pro-apoptotic member of the Bcl-2 family of proteins that is thought to exert a death-promoting effect by heterodimerization with Bcl-X(L), nullifying its anti-apoptotic activity. Growth factors may promote cell survival at least partially through phosphorylation of Bad at one or more of Ser-112, -136, or -155. Our previous work showed that Bad is(More)
PIK3CA, which codes for the p110alpha catalytic subunit of phosphatidylinositol-3-kinase (PI3K), is implicated as an oncogene. Despite importance of PIK3CA in cancer, little is known about what drives up its expression in tumor cells. We recently characterized the PIK3CA promoter and reported that it is transcriptionally silenced by the tumor suppressor(More)
Mcl-1 (myeloid cell leukaemia-1) is a Bcl-2 family member with short-term pro-survival functions but whose other functions, demonstrated by embryonic lethality of knockout mice, do not involve apoptosis. In the present study, we show a cell-cycle-regulatory role of Mcl-1 involving a shortened form of the Mcl-1 polypeptide, primarily localized to the(More)
Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site(More)
Here we report a novel role for myeloid cell leukemia 1 (Mcl-1), a Bcl-2 family member, in regulating phosphorylation and activation of DNA damage checkpoint kinase, Chk1. Increased expression of nuclear Mcl-1 and/or a previously reported short nuclear form of Mcl-1, snMcl-1, was observed in response to treatment with low concentrations of etoposide or low(More)
p53 is a tumor suppressor protein which is either lost or inactivated in a large majority of tumors. The small molecule 2-phenylethynesulfonamide (PES) was originally identified as the inhibitor of p53 effects on the mitochondrial death pathway. In this report we demonstrate that p53 protein from PES-treated cells was detected in reduced mobility bands(More)
The survival of macrophages depends on the presence of specific cytokines that activate survival signaling events, as well as suppressing formation of apoptosis-inducing pathways. We have previously shown that macrophages deprived of macrophage colony stimulating factor (M-CSF) produce ceramide that contributes to apoptosis of these cells, a pathway that is(More)
It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating(More)
  • 1