Payam Ghiaci

Learn More
BACKGROUND Butanol is a chemical with potential uses as biofuel and solvent, which can be produced by microbial fermentation. However, the end product toxicity is one of the main obstacles for developing the production process irrespective of the choice of production organism. The long-term goal of the present project is to produce 2-butanol in(More)
Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with(More)
2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in(More)
2-Butanol has been an issue of industries in many areas, for example, biofuel production (as an advanced alternate fuel), fermented beverages, and food (as taste-altering component). Thus, its source of production, the biological pathway, and the enzymes involved are of high interest. In this study, 42 different isolates of lactic acid bacteria from nine(More)
This study was conducted in two main stages. In the first stage, drug-loaded montmorillonite nanocomposites were prepared by intercalation of insulin into the montmorillonite layers in acidic deionized (DI) water. In the second stage, to increase the release of insulin from the prepared nanocomposites they were coated with TiO2, an inorganic porous coating,(More)
  • 1