Learn More
Molecular recognition between biotinylated bovine serum albumin and polyclonal, biotin-directed IG antibodies has been measured directly under various buffer conditions using an atomic force microscope (AFM). It was found that even highly structured molecules such as IgG antibodies preserve their specific affinity to their antigens when probed with an AFM(More)
We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at sqrt[s]=1.96  TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45  fb(-1). We consider events having no identified charged lepton, a transverse energy(More)
Measurement of binding forces intrinsic to adhesion molecules is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. Atomic force microscopy was used to measure the binding strength between cell adhesion proteoglycans from a marine sponge. Under physiological conditions, the adhesive force(More)
p53 is thought to function in the maintenance of genomic stability by modulating transcription and interacting with cellular proteins to influence the cell cycle, DNA repair and apoptosis. p53 mutations occur in >50% of human cancers, and cells which lack wild type p53 accumulate karyotypic abnormalities such as amplifications, deletions, inversions and(More)
Amplifying on a proposal by O'Dell et al. for the realization of Bose-Einstein condensates of neutral atoms with attractive 1 / r interaction, we point out that the instance of self-trapping of the condensate, without an external trap potential, is physically best understood by introducing appropriate " atomic " units. This reveals a remarkable scaling(More)
We obtain first-order equations for G 2 holonomy of a wide class of metrics with S 3 × S 3 principal orbits and SU (2) × SU (2) isometry, using a method recently introduced by Hitchin. The new construction extends previous results, and encompasses all previously-obtained first-order systems for such metrics. We also study various group contractions of the(More)
Results are presented from a search for new physics in the final state containing a photon (γ) and missing transverse energy (E[combininb /](T)). The data correspond to an integrated luminosity of 5.0 fb(-1) collected in pp collisions at √[s]=7 TeV by the CMS experiment. The observed event yield agrees with standard-model expectations for the γ+E[combininb(More)
We present a search for a new narrow, spin-1, high mass resonance decaying to μ(+)μ⁻+X, using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and production rate. In data with 4.6 fb⁻¹ of integrated luminosity collected by the CDF detector in pp collisions at √s=1960 GeV, the most likely signal cross section is(More)
We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45  fb(-1). In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electron or muon pairs, we set 95% credibility(More)
A search for a Higgs boson in the four-lepton decay channel H→ZZ, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range of 110<m(H)<600 GeV. The analysis uses data corresponding to an integrated luminosity of 4.7 fb(-1) recorded by the CMS detector in pp collisions at √s=7 TeV from(More)