Learn More
We extend the binary search technique to searching in trees. We consider two models of queries: questions about vertices and questions about edges. We present a general approach to this sort of problem, and apply it to both cases, achieving algorithms constructing optimal decision trees. In the edge query model the problem is identical to the problem of(More)
  • Pawel Parys
  • 2012 27th Annual IEEE Symposium on Logic in…
  • 2012
We show that deterministic collapsible pushdown automata of second level can recognize a language which is not recognizable by any deterministic higher order pushdown automaton (without collapse) of any level. This implies that there exists a tree generated by a second level collapsible pushdown system (equivalently: by a recursion scheme of second level),(More)
We show that collapsible deterministic second level pushdown automata can recognize more languages than deterministic second level pushdown automata (without collapse). This implies that there exists a tree generated by a second level recursion scheme which is not generated by any second level safe recursion scheme. 1998 ACM Subject Classification F.4.3(More)
Tree pattern queries are being investigated in database theory for more than a decade. They are a fundamental and flexible query mechanism and have been considered in the context of querying tree structured as well as graph structured data. We revisit their containment, validity, and satisfiability problem, both with and without schema information. We(More)
We propose a new extension of higher-order pushdown automata, which allows to use an infinite alphabet. The new automata recognize languages of data words (instead of normal words), which beside each its letter from a finite alphabet have a data value from an infinite alphabet. Those data values can be loaded to the stack of the automaton, and later(More)
We present a pumping lemma for the class of ε-contractions of pushdown graphs of level n, for each n. A pumping lemma was proposed by Blumensath, but there is an irrecoverable error in his proof; we present a new proof. Our pumping lemma also improves the bounds given in the invalid paper of Blumensath. 1998 ACM Subject Classification F.1.1 Models of(More)