Learn More
BACKGROUND In the past decade, catheter ablation has become an established therapy for symptomatic atrial fibrillation (AF). Until very recently, few data have been available to guide the clinical community on the outcomes of AF ablation at ≥3 years of follow-up. We aimed to systematically review the medical literature to evaluate the long-term outcomes of(More)
The Hilbert transform has been used to characterize wave propagation and detect phase singularities during cardiac fibrillation. Two mapping modalities have been used: optical mapping (used to map atria and ventricles) and contact electrode mapping (used only to map ventricles). Due to specific morphology of atrial electrograms, phase reconstruction of(More)
Using a dynamical model of smooth muscle cells in an arterial wall, defined as a system of coupled five-dimensional nonlinear oscillators, on a grid with cylindrical symmetry, we compare the admissible activity patterns with those known from the heart tissue. We postulate on numerical basis the possibility to induce a stable spiral wave in the arterial(More)
BACKGROUND Both ageing and hypertension are known risk factors for atrial fibrillation (AF) although the pathophysiological contribution or interaction of the individual factors remains poorly understood. Here we aim to delineate the arrhythmogenic atrial substrate in mature spontaneously hypertensive rats (SHR). METHODS SHR were studied at 12 and 15(More)
BACKGROUND Recently pericardial adipose tissue (PAT) has been shown to be an independent predictor of atrial fibrillation (AF). Atrial PAT may influence underlying atrial musculature creating a substrate for AF. This study sought to validate the assessment of total and atrial PAT by standard cardiovascular magnetic resonance (CMR) measures and describe and(More)
BACKGROUND Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar(More)
Many conditions remodel the heart muscle such that it results in a perturbation of cells coupling. The effect of this perturbation on the stability of the spiral waves of electrochemical activity is not clear. We used the FitzHugh-Nagumo model of an excitable medium to model the conduction of the activation waves in a two-dimensional system with(More)
Atrial fibrillation is the most common type of arrhythmia to affect humans. One of the treatment modalities for atrial fibrillation is an electrical cardioversion. Electrical cardioversion can result in one of three outcomes: an immediate termination of arrhythmic activity, a delayed termination or unsuccessful termination. The mechanism of delayed(More)
BACKGROUND Electrogram-based identification of the regions maintaining persistent Atrial Fibrillation (AF) is a subject of ongoing debate. Here, we explore the concept of local electrical dyssynchrony to identify AF drivers. METHODS AND RESULTS Local electrical dyssynchrony was calculated using mean phase coherence. High-density epicardial mapping along(More)
Unipolar electrogram can detect local as well as remote electrical activity of the heart. Information on how the amplitude and morphology of the recorded signal changes with the distance from the source tissue undergoing depolarization can help to better understand unipolar electrograms fractionation and provide insights into the passive conduction(More)