Pawan Lingras

Learn More
Data collection and analysis in web mining faces certain unique challenges. Due to a variety of reasons inherent in web browsing and web logging, the likelihood of bad or incomplete data is higher than conventional applications. The analytical techniques in web mining need to accommodate such data. Fuzzy and rough sets provide the ability to deal with(More)
This paper describes rough neural networks which consists of a combination of rough neurons and conventional neurons. Rough neurons use pairs of upper and lower bounds as values for input and output. In some practical situations, it is preferable to develop prediction models that use ranges as values for input and/or output variables. A need to provide(More)
Analyses from some of the highway agencies show that up to 50% permanent traffic counts (PTCs) have missing values. It will be difficult to eliminate such a significant portion of data from traffic analysis. Literature review indicates that the limited research uses factor or autoregressive integrated moving average (ARIMA) models for predicting missing(More)
Rough support vector machines (RSVMs) supplement conventional support vector machines (SVMs) by providing a better representation of the boundary region. Increasing interest has been paid to the theoretical development of RSVMs, which has already lead to a modification of existing SVM implementations as RSVMs. This paper shows how to extend the use of(More)
The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set(More)