Pawan K Tyagi

  • Citations Per Year
Learn More
Multi-wall carbon nanotubes are grown in a chemical vapor deposition process by using bulk gold and copper substrates as catalysts. Nanotube growth starts from a nanometer-sized roughness on the metal surfaces and occurs in a mechanism where the catalyst particle is either at the tip (Au) or root (Cu) of the growing nanotube. Whereas Au leads to nanotubes(More)
The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to(More)
We describe an assembly technique useful for generating ordered arrays of nanowires (NWs) between electrodes via dielectrophoresis (DEP) and an analysis technique useful for extracting quantitative information about the local electric fields and dielectrophoretic forces from video microscopy data. By tuning the magnitude of the applied electric fields such(More)
Nickel nanorods with diameters ranging from 5 to 10 nm, encapsulated inside the carbon nanotubes, are prepared using microwave plasma chemical vapor deposition. High-resolution transmission electron microscopy (HRTEM) studies reveal the perfect crystalline nature of the rods with d-spacing closely matching the (111) interplanar spacing of Ni. The (111)(More)
Producing reliable electrical contacts of molecular dimensions has been a critical challenge in the field of molecule-based electronics. Conventional thin film deposition and photolithography techniques have been utilized to construct novel nanometer-sized electrodes on the exposed vertical plane on the edge of a thin film multilayer structure(More)
The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to(More)
This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM(More)
Multiwalled carbon nanotubes are grown by microwave plasma chemical vapor deposition with CH4 and H2 as precursor gases. Ni and Ni/Pt electroplated layers are used as catalysts for the synthesis of the tubes. We observe that a very efficient filling of the tubes takes place with Ni. In some cases Ni/Pt filling is also observed inside the tubes.(More)
  • 1