Pavel Zemcík

Learn More
The aim of the research described in this article is to accelerate object detection in images and video sequences using graphics processors. It includes algorithmic modifications and adjustments of existing detectors, constructing variants of efficient implementations and evaluation comparing with efficient implementations on the CPUs. This article focuses(More)
This paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compression artifacts reduction, and that such networks can provide significantly better reconstruction quality compared to previously used smaller networks as well as to any other state-of-the-art methods. We were able to train networks with 8 layers(More)
This paper evaluates the suitability of High Dynamic Range (HDR) imaging techniques for feature point detection under extreme lighting conditions. The conditions are extreme in respect to the dynamic range of the lighting within the test scenes used. This dynamic range cannot be captured using standard low dynamic range imagery techniques without loss of(More)
A large number of robotic, computer vision and computer graphics applications rely on efficiently solving the associated sparse linear systems. Simultaneous localization and mapping (SLAM), structure from motion (SfM), non-rigid shape recovery, and elastodynamic simulations are only few examples in this direction. In general, these problems are nonlinear(More)
Efficiently solving nonlinear least squares (NLS) problems is crucial for many applications in robotics. In online applications, solving the associated nolinear systems every step may become very expensive. This paper introduces online, incremental solutions, which take full advantage of the sparseblock structure of the problems in robotics. In general, the(More)
The project Augmented Multi-party Interaction (AMI) is concerned with the development of meeting browsers and remote meeting assistants for instrumented meeting rooms – and the required component technologies R&D themes: group dynamics, audio, visual, and multimodal processing, content abstraction, and human-computer interaction. The audio-visual processing(More)