Pavel Shkarin

Learn More
The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor(More)
Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors(More)
Obesity has risen to epidemic levels in the United States and around the world. Global indices of obesity such as the body mass index (BMI) have been known to be inaccurate predictors of risk of diabetes, and it is commonly recognized that the distribution of fat in the body is a key measure. In this work, we describe the early development of image analysis(More)
This pilot study examines noninvasive MR monitoring of tissue-engineered vascular grafts (TEVGs) in vivo using cells labeled with iron oxide nanoparticles. Human aortic smooth muscle cells (hASMCs) were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The labeled hASMCs, along with human aortic endothelial cells, were incorporated(More)
BACKGROUND Evaluation of lymphedema and lymph node metastasis in humans has relied primarily on invasive or radioactive modalities. While noninvasive technologies such as magnetic resonance imaging (MRI) offer the potential for true three-dimensional imaging of lymphatic structures, invasive modalities, such as optical fluorescence microscopy, provide(More)
The spatial distribution of polyunsaturated fatty acids (PUFA) in healthy and cancerous human breast tissues was measured in vivo with a selective multiple-quantum coherence transfer (Sel-MQC) technique. This method selectively detected the olefinic methylene protons (-CH = CH-) of PUFA at 5.3 ppm that were coupled with allylic methylene protons(More)