Pavel Neuzil

Learn More
We have designed, fabricated and tested a real-time micro polymerase chain reaction (microPCR) system. It consists of a microscope glass cover slip placed on top of a micromachined silicon chip integrated with a heater and a temperature sensor. A single microL of a sample containing DNA was placed on the glass and encapsulated with mineral oil to prevent(More)
We have designed, fabricated and tested a real-time PCR chip capable of conducting one thermal cycle in 8.5 s. This corresponds to 40 cycles of PCR in 5 min and 40 s. The PCR system was made of silicon micromachined into the shape of a cantilever terminated with a disc. The thin film heater and a temperature sensor were placed on the disc perimeter. Due to(More)
Near-field photodetection optical microscopy (NPOM) is a fundamentally new approach to near-field optical microscopy. This scanning-probe technique uses a nanometer-scale photodiode detector as a near-field optical probe. We have fabricated probes for NPOM that have optically sensitive areas as small as 100 nm x 100 nm. These new NPOM probes have been(More)
Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information(More)
Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin(More)
  • 1