Pavel Brazdil

Learn More
We present a meta-learning method to support selection of candidate learning algorithms. It uses a k-Nearest Neighbor algorithm to identify the datasets that are most similar to the one at hand. The distance between datasets is assessed using a relatively small set of data characteristics, which was selected to represent properties that affect algorithm(More)
Using multiple classifiers for increasing learning accuracy is an active research area. In this paper we present two related methods for merging classifiers. The first method, Cascade Generalization, couples classifiers loosely. It belongs to the family of stacking algorithms. The basic idea of Cascade Generalization is to use sequentially the set of(More)
This paper presents new measures, based on the induced decision tree, to characterise datasets for meta-learning in order to select appropriate learning algorithms. The main idea is to capture the characteristics of dataset from the structural shape and size of decision tree induced from the dataset. Totally 15 measures are proposed to describe the(More)
Current data mining tools are characterized by a plethora of algorithms but a lack of guidelines to select the right method according to the nature of the problem under analysis. Producing such guidelines is a primary goal by the field of meta-learning; the research objective is to understand the interaction between the mechanism of learning and the(More)
We investigate the problem of using past performance information to select an algorithm for a given classiication problem. We present three ranking methods for that purpose: average ranks, success rate ratios and signiicant wins. We also analyze the problem of evaluating and comparing these methods. The evaluation technique used is based on a leave-one-out(More)
In this paper we are concerned with the problem of acquiring knowledge by integration. Our aim is to construct an integrated knowledge base from several separate sources. The need to merge knowledge bases can arise, for example, when knowledge bases are acquired independently from interactions with several domain experts. As opinions of different domain(More)
Recent advances in meta-learning are providing the foundations to construct meta-learning assistants and task-adaptive learners. The goal of this special issue is to foster an interest in meta-learning by compiling representative work in the field. The contributions to this special issue provide strong insights into the construction of future meta-learning(More)