Pavel Borisov

Learn More
The perpendicular exchange bias field, H(EB), of the magnetoelectric heterostructure Cr2O3(111)/(Co/Pt)(3) changes sign after field cooling to below the Néel temperature of Cr2O3 in either parallel or antiparallel axial magnetic and electric freezing fields. The switching of H(EB) is explained by magnetoelectrically induced antiferromagnetic single domains(More)
By close analogy with multiferroic materials with coexisting long-range electric and magnetic orders a "multiglass" scenario of two different glassy states is observed in Sr(0.98)Mn(0.02)TiO(3) ceramics. Sr-site substituted Mn2+ ions are at the origin of both a polar and a spin glass with glass temperatures T(g) approximately equal to 38 K and < or =34 K,(More)
The coexistence of cluster glass with long-range antiferromagnetic order in the relaxor ferroelectric PbFe 0.5 Nb 0.5 O3 is elucidated. While the transition at T(N) = 153 K on the infinite antiferromagnetic cluster induces 3m symmetry with large EH2 magnetoelectric response, the disconnected subspace of isolated Fe3+ ions and finite clusters accommodates(More)
A commercial superconducting quantum interference device (SQUID) setup (MPMS 5S from Quantum Design), equipped with a magnetic ac susceptibility option, is modified for measurements of the linear magnetoelectric (ME) effect, i.e., of the magnetic moment induced by an applied external electric field in a ME sample. Test measurements on a Cr(2)O(3) (111)(More)
Ferrimagnetic CoFe2O4 nanopillars embedded in a ferroelectric BaTiO3 matrix are an example for a two-phase magnetoelectrically coupled system. They operate at room temperature and are free of any resource-critical rare-earth element, which makes them interesting for potential applications. Prior studies succeeded in showing strain-mediated coupling between(More)
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through(More)
Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was(More)
Magnetoelectric (ME) materials are of utmost interest in view of both fundamental understanding and novel desirable applications. Despite its smallness, the linear ME effect has been shown to control spintronic devices very efficiently, e.g., by using the classic ME antiferromagnet Cr₂O₃. Similar nano-engineering concepts exist also for type-I multiferroic(More)