Paulo Tavares

Learn More
In many bacterial viruses and in certain animal viruses, the double-stranded DNA genome enters and exits the capsid through a portal gatekeeper. We report a pseudoatomic structure of a complete portal system. The bacteriophage SPP1 gatekeeper is composed of dodecamers of the portal protein gp6, the adaptor gp15, and the stopper gp16. The solution structures(More)
Tailed bacteriophages and herpesviruses load their capsids with DNA through a tunnel formed by the portal protein assembly. Here we describe the X-ray structure of the bacteriophage SPP1 portal protein in its isolated 13-subunit form and the pseudoatomic structure of a 12-subunit assembly. The first defines the DNA-interacting segments (tunnel loops) that(More)
BACKGROUND The transciliary supraorbital approach (TCSO) provides an anterior view for visualizing sellar, parasellar, and suprasellar structures. Whether an orbital osteotomy adds to this exposure has not been quantified. OBJECTIVE We quantitatively evaluated the TCSO and benefits of an additional orbital osteotomy for exposing common sites of anterior(More)
The genetic diversity observed among bacteriophages remains a major obstacle for the identification of homologs and the comparison of their functional modules. In the structural module, although several classes of homologous proteins contributing to the head and tail structure can be detected, proteins of the head-to-tail connection (or neck) are generally(More)
In tailed bacteriophages and herpes viruses, the viral DNA is packaged through the portal protein channel. Channel closure is essential to prevent DNA release after packaging. Here we present the connector structure from bacteriophage SPP1 using cryo-electron microscopy and single particle analysis. The multiprotein complex comprises the portal protein gp6(More)
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic(More)
The AraR protein is a negative regulator involved in L-arabinose-inducible expression of the Bacillus subtilis araABDLMNPQ-abfA metabolic operon and of the araE/araR genes that are organized as a divergent transcriptional unit. The two ara gene clusters are found at different positions in the bacterial chromosome. AraR was overproduced in Escherichia coli(More)
The majority of known bacteriophages have long noncontractile tails (Siphoviridae) that serve as a pipeline for genome delivery into the host cytoplasm. The tail extremity distal from the phage head is an adsorption device that recognises the bacterial receptor at the host cell surface. This interaction generates a signal transmitted to the head that leads(More)
The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of(More)
Tailed icosahedral bacteriophages and other viruses package their double-stranded DNA inside a preformed procapsid. In a large number of phages packaging is initiated by recognition and cleavage by a viral packaging ATPase (terminase) of the specific pac sequence (pac cleavage), which generates the first DNA end to be encapsidated. A sequence-independent(More)