Paulo H.O. Ceciliato

Learn More
Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted(More)
RALF is a small (5 kDa) and ubiquitous plant peptide signal. It was first isolated from tobacco leaf protein extracts owing to its capacity to alkalinize the extracellular media of cell suspensions. RALFs inhibit root growth and hypocotyl elongation, and a role for RALFs in cell expansion has also been proposed. Arabidopsis has 37 RALF isoforms (AtRALF),(More)
Arabidopsis thaliana rapid alkalinization factor 1 (AtRALF1) is a small secreted peptide hormone that inhibits root growth by repressing cell expansion. Although it is known that AtRALF1 binds the plasma membrane receptor FERONIA and conveys its signals via phosphorylation, the AtRALF1 signaling pathway is largely unknown. Here, using a yeast two hybrid(More)
The rapid alkalinization factor (RALF) peptide negatively regulates cell expansion, and an antagonistic relationship has been demonstrated between AtRALF1, a root-specific RALF isoform in Arabidopsis, and brassinosteroids (BRs). An evaluation of the response of BR signaling mutants to AtRALF1 revealed that BRI1-associated receptor kinase1 (bak1) mutants are(More)
  • 1