Learn More
The effect of glutamate on [Ca2+]i and on [3H] gamma-aminobutyric acid (GABA) release was studied on cultured chick embryonic retina cells. It was observed that glutamate (100 microM) increases the [Ca2+]i by Ca2+ influx through Ca2+ channels sensitive to nitrendipine, but not to omega-conotoxin GVIA (omega-Cg Tx) (50%), and by other channels insensitive to(More)
Adenosine triphosphate (ATP) has been proposed to play a role as a neurotransmitter in the retina, but not much attention has been given to the regulation of ATP release from retinal neurons. In this work, we investigated the release of ATP from cultures enriched in amacrine-like neurons. Depolarization of the cells with KCl, or activation of(More)
The Dale's law postulates that a neuron releases the same neurotransmitter from all its branches. In the case of multiple neurotransmitters it would require all transmitters to be released from all branches. The retinal cholinergic amacrine cells contain and release gamma-aminobutyric (GABA) and, therefore, if GABA and acetylcholine (ACh) are released at(More)
NPY is present in the retina of different species but its role is not elucidated yet. In this work, using different rat retina in vitro models (whole retina, retinal cells in culture, microglial cell cultures, rat Müller cell line and retina endothelial cell line), we demonstrated that NPY staining is present in the retina in different cell types: neurons,(More)
Retinal amacrine cells express metabotropic glutamate receptors (mGluRs), but their physiological role is unknown. We investigated the effect of mGluR on [(3)H]acetylcholine release ([(3)H]ACh) from cultured chick amacrine-like neurons. Activation of group III mGluR with the agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) inhibited [(3)H]ACh release(More)
Depolarization by K+ (50 mM) of cultured chick retina cells released 1.14 +/- 0.28% of the accumulated [3H] gamma-aminobutyric acid (GABA) in the absence of Ca2+, but when 1.0 mM Ca2+ was present, the internal free calcium ion concentration [Ca2+]i rose by about 750 nM and the [3H]GABA release about doubled to a value of 2.22 +/- 0.2% of the total [3H]GABA.(More)
Diabetes induces changes in neurotransmitter release in central nervous system, which depend on the type of neurotransmitter and region studied. In this study, we evaluated the effect of diabetes (two and eight weeks duration) on basal and evoked release of [(14)C]glutamate and [(3)H]GABA in hippocampal and retinal synaptosomes. We also analyzed the effect(More)
Several evidences suggest that glutamate may be involved in retinal neurodegeneration in diabetic retinopathy (DR). For that reason, we investigated whether high glucose or diabetes affect the accumulation and the release of [(3)H]-D-aspartate, which was used as a marker of the glutamate transmitter pool. The accumulation of [(3)H]-D-aspartate did not(More)
In the present work we investigated the mechanisms controlling the release of acetylcholine (ACh) and of gamma-aminobutyric acid (GABA) from cultures of amacrine-like neurons, containing a subpopulation of cells which are simultaneously GABAergic and cholinergic. We found that 81.2 +/- 2.8% of the cells present in the culture were stained(More)
We studied the release of [3H]D-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca(2+)-dependent and Ca(2+)-independent release of [3H]D-aspartate. In Ca(2+)-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the(More)