Paulo D. F. Gouveia

Learn More
We present analytic computational tools that permit us to identify, in an automatic way, conservation laws in optimal control. The central result we use is the famous Noether’s theorem, a classical theory developed by Emmy Noether in 1918, in the context of the calculus of variations and mathematical physics, and which was extended recently to the more(More)
We use a computer algebra system to compute, in an efficient way, optimal control variational symmetries up to a gauge term. The symmetries are then used to obtain families of Noether’s first integrals, possibly in the presence of nonconservative external forces. As an application, we obtain eight independent first integrals for the sub-Riemannian nilpotent(More)
A two-dimensional body, exhibiting a slight rotational movement, moves in a rarefied medium of particles which collide with it in a perfectly elastic way. In previously realized investigations by the first two authors, Plakhov & Gouveia (2007, Nonlinearity, 20), shapes of nonconvex bodies were sought which would maximize the braking force of the medium on(More)
Abstract: We use a computer algebra system to compute, in an efficient way, optimal control variational symmetries up to a gauge term. The symmetries are then used to obtain families of Noether’s first integrals, possibly in the presence of nonconservative external forces. As an application, we obtain eight independent first integrals for a sub-Riemannian(More)
  • 1