Learn More
We have characterized the fine structure of sulfated polysaccharides from the egg jelly layer of three species of sea urchins and tested the ability of these purified polysaccharides to induce the acrosome reaction in spermatozoa. The sea urchin Echinometra lucunter contains a homopolymer of 2-sulfated, 3-linked alpha-L-galactan. The species Arbacia lixula(More)
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of(More)
We have characterized the structure of a sulfated d-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-alpha-d-Galp-1-->3-beta-d-Galp-1-->) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total alpha-units are 2,3-di-O-sulfated and another one-third are(More)
Dermatan sulfates with the same backbone structure [4-alpha-L-IdceA-1-->3-beta-D-GalNAc-1]n but with different patterns of sulfation substitutions have been isolated from the ascidian body. All the ascidian dermatan sulfates have a high content of 2-O-sulfated alpha-L-iduronic acid residues but differ in the pattern of sulfation of the(More)
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of(More)
The egg jelly coats of sea urchins contains sulfated polysaccharides responsible for inducing the sperm acrosome reaction which is an obligatory event for sperm binding to, and fusion with, the egg. Here, we extend our study to the sea urchin Strongylocentrotus franciscanus. The egg jelly of this species contains a homofucan composed of 2- O -sulfated,(More)
Sulfated polysaccharides from egg jelly are the molecules responsible for inducing the sperm acrosome reaction in sea urchins. This is an obligatory event for sperm binding to, and fusion with, the egg. The sulfated polysaccharides from sea urchins have simple, well defined repeating structures, and each species represents a particular pattern of sulfate(More)
Sulfated fucans from echinoderms (sea cucumber and sea urchin) have a linear backbone of 1-->3-linked alpha-L-fucopyranose with some sulfate substitution at the 2- and 4-positions. NMR spectroscopy indicates that both polysaccharides have a tetrasaccharide repeat unit in which the separate residues differ only in the extent and position of their sulfate(More)
The sulfated fucan (SF) of egg jelly induces the acrosome reaction (AR) of sea urchin sperm. Strongylocentrotus franciscanus (Sf) SF is sulfated only at the 2-position. Strongylocentrotus purpuratus (Sp) has two SF isotypes, each one being female specific. One is rich in sulfate at both the 2- and 4-positionS (SF-1), and the other is rich in sulfate at the(More)
A polysaccharide isolated from the body wall of the sea cucumber Ludwigothurea grisea has a backbone like that of mammalian chondroitin sulfate: [4-beta-D-GlcA-1-->3-beta-D-GalNAc-1]n but substituted at the 3-position of the beta--glucuronic acid residues with sulfated alpha--fucopyranosyl branches (Vieira, R. P., Mulloy, B., and Mourão, P. A. S. (1991) J.(More)