Learn More
The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain(More)
In the past decade, we have witnessed great advances in the identification of genes underlying numerous neurodegenerative diseases and the stark complexity determining genotype-phenotype relationships that lead to the impairment, and ultimately, premature death of neurons. However, significant challenges lie ahead in understanding the pathobiological and(More)
PURPOSE Mutations in RPGRIP1 cause Leber congenital amaurosis. The human and bovine RPGRIP1 undergo alternative splicing. A single murine rpgrip1 transcript has been reported, but distinct expression profiles of RPGRIP1 isoforms exist between species in the retina. To elucidate the heterogeneity of RPGRIP1 isoforms and the degree of functional redundancy(More)
The Ran-binding protein 2 (RanBP2) is a vertebrate mosaic protein composed of four interspersed RanGTPase binding domains (RBDs), a variable and species-specific zinc finger cluster domain, leucine-rich, cyclophilin, and cyclophilin-like (CLD) domains. Functional mapping of RanBP2 showed that the domains, zinc finger and CLD, between RBD1 and RBD2, and RBD3(More)
In addition to fixing atmospheric nitrogen, some bacterial isolates can also solubilize insoluble phosphates, further contributing to plant growth. The objectives of this study were the following: isolate, select, and identify nodulating bacteria in the cowpea that are efficient not only in biological nitrogen fixation (BNF) but also in the solubilization(More)
Cyclophilins are ubiquitous and abundant proteins that exhibit peptidyl prolyl cis-trans isomerization (PPlase) activity in vitro. Their functions in vivo, however, are not well understood. Two new retinal cyclophilin isoforms, types I and II, are highly expressed in cone photoreceptors of the vertebrate retina. Type-II cyclophilin is identical to RanBP2, a(More)
The Drosophila norpA gene encodes a phosphatidylinositol-specific phospholipase C (PI-PLC) expressed predominantly in photoreceptors and involved in phototransduction. However, no direct role for a phospholipase C in vertebrate phototransduction has been identified to date. Recently, we reported the isolation and characterization of bovine cDNAs encoding(More)
The Drosophila ninaA gene encodes photoreceptor-specific cyclophilin thought to play a critical role in rhodopsin folding or transport during its synthesis or maturation in the most abundant subclass of photoreceptors. Cyclophilins comprise a highly conserved family of proteins which are the primary targets of the potent immunosuppressive drug, cyclosporin(More)
The retinitis pigmentosa GTPase regulator (RPGR) is encoded by the X-linked RP3 locus, which upon genetic lesions leads to neurodegeneration of photoreceptors and blindness. The findings that RPGR specifically and directly interacts in vivo and in vitro with retina-specific RPGR-interacting protein 1 (RPGRIP) and that human mutations in RPGR uncouple its(More)
Ran-binding protein 2 (RanBP2) (type II) is a retinal cyclophilin-related protein that binds Ran-GTPase. Type I cyclophilin is a shorter, alternatively spliced isoform of RanBP2. Recently, we showed that the Ran-binding domain 4 (RBD4)/cyclophilin (CY) supradomain of RanBP2 acts both in vitro and in vivo as a specific chaperone for bovine red/green opsin(More)