Paulino Pérez

Learn More
The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which(More)
The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The(More)
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for(More)
Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating(More)
New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments. In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by(More)
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic selection. However, the use of GBS data poses important challenges,(More)
The BLR (Bayesian linear regression) package of R implements several Bayesian regression models for continuous traits. The package was originally developed for implementing the Bayesian LASSO (BL) of Park and Casella (J Am Stat Assoc 103(482):681-686, 2008), extended to accommodate fixed effects and regressions on pedigree using methods described by de los(More)
ABSTRACT The availability of thousands of genome wide molecular markers has made possible the use of genomic selection in plants and animals. However, the evaluation of models for genomic selection in plant breeding populations is very limited. In this study, we provide an overview of several models for genomic selection, whose predictive ability we(More)
OBJECTIVE To report the transcervical and transisthmic evacuation of a dichorionic interstitial twin pregnancy guided by ultrasound. DESIGN Case study. SETTING Fetal medicine unit of university hospital. PATIENT(S) Dichorionic twin fetuses. INTERVENTION(S) Three-dimensional/four-dimensional (3D/4D) ultrasound-guided transcervical and transisthmic(More)